Abstract

Gametangia of the aquatic phycomycete Allomyces macrogynus have a cyanide- and antimycin A-insensitive respiration, which is sensitive to salicylhydroxamic acid (alternative respiration). Propyl gallate is also an inhibitor of this alternative pathway, and propyl gallate is more efficient than hydroxamic acid. Gametangial respiration is insensitive to propyl gallate, but propyl gallate sensitivity is gradually established when the gametangia are titrated with cyanide. Carbonyl cyanide m-chlorophenyl hydrazone stimulates the cyanide-sensitive respiration and engages the alternative sensitive respiration. Sodium azide inhibits both the alternative and the cyanide-sensitive respiration, but the cyanide-sensitive respiration is inhibited 10 times more efficiently than the alternative respiration. Rotenone inhibits the total respiration and the propyl gallate-insensitive respiration by 33% and the cyanide-insensitive respiration by 43%.The kinetic results reported here are discussed with respect to the models of de Troostembergh and Nyns (1977 Arch Int Physiol Biochem 85:404-406; 1978 Eur J Biochem 53:423-432) and of Bahr and Bonner (1973 J Biol Chem 248:3446-3450) for the partitioning of electrons between cyanide-insensitive and propyl gallate-insensitive respiration. The results reported here do not agree with the model of de Troostembergh and Nyns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call