Abstract

Quantifying ecosystem respiration remains challenging in aquatic ecosystems. Most investigators assume that nighttime and daytime respiration are equal. Recent studies suggest measuring dissolved oxygen isotopes during periods with and without photosynthesis can account for variations in daytime and nighttime respiration. These models are extremely sensitive to the oxygen isotopic fractionation factor (α) value used for respiration, yet almost nothing is known about the variability of α and factors driving that variability. We quantified how α varies with temperature and flow velocity using field measurements, laboratory experiments, and a modeling approach. We measured α in the field using sealed recirculating chambers in 16 rivers from different biomes (temperate, tropical, and sub-arctic) to assess a range of possible α values. The α values were widely variable, and variation was higher among sites in the same biome or ecoregion (e.g. 0.9780 ± 0.005 to 0.9898 ± 0.002 among six desert sites) than across different biomes. Our data revealed that both temperature, flow, and biofilm characteristics produced variations in α, with temperature decreasing and flow increasing it, until leveling off at high flow velocities. Biological and physical processes occurring in the diffusion boundary layer produced variations in α. Our results highlight that environmental conditions produce variable α values, the need for site-specific α measurements, and practical implications for consideration when measuring α in the field. More generally we illustrate an array of factors that can influence isotopic fractionation associated with metabolic activity of biologically active layers that could be important in any diffusion-limited environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.