Abstract
Decomposing coarse woody debris (CWD) is a conspicuous and important component of forest ecosystems. Seasonal temperature and precipitation patterns influence heterotroph activity, which determines the rate of CWD decomposition. We tested the hypothesis that moisture content and heterotroph community composition influence carbon flux in freshly-cut Douglas fir (Pseudotsuga menziesii) logs. To evaluate the effects of physical penetration of bark and wood and transmission of basidiomycete compared with ascomycete fungi by insects, 360 experimental logs were assigned to five replicate sites, each with 12 heterotroph×moisture treatment combinations in 1995. Half of the logs in each heterotroph treatment received normal rainfall and half were placed individually under elevated clear plastic tents to reduce water inputs. Respiration was measured every 1-3 months. In 1996 and 1997 a different log representing each treatment combination was harvested from each replicate and analyzed for the presence of inoculated and colonizing fungi. Logs inoculated with decay fungi had higher respiration than uninoculated logs but this effect only approached significance (P=0.08) during the first season. Respiration was significantly higher in sheltered than in exposed logs. Our results indicate that respiration and wood decomposition rates may be depressed by high moisture content in the wet forests of the coastal Pacific Northwest.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.