Abstract

Fruit of soursop, Annona muricata L., showed increased CO(2) production 2 days after harvest, preceding the respiratory increase that coincided with autocatalytic ethylene evolution and other ripening phenomena. Experiments to alter gas exchange patterns of postharvest fruit parts and tissue cylinders had little success.The respiratory quotient of tissue discs was near unity throughout development. 2,4-Dinitrophenol uncoupled respiration more effectively than carbonylcyanide m-chlorophenylhydrazone; 0.4 millimolar KCN stimulated, 4 millimolar salicylhydroxamic acid slightly inhibited, and their combination strongly inhibited respiration, as did 10 millimolar NaN(3). Tricarboxylic acid cycle members and ascorbate were more effective substrates than sugars, but acetate and glutarate strongly inhibited.Disc respiration showed the same early peak as whole fruit respiration; this peak is thus an inherent characteristic of postharvest development and cannot be ascribed to differences between ovaries of the aggregatetype fruit. The capacity of the respiratory apparatus did not change during this preclimacteric peak, but the contents of rate-limiting malate and citrate increased after harvest.It is concluded that the preclimacteric rise in CO(2) evolution reflects increased mitochondrial respiration because of enhanced supply of carboxylates as a substrate, probably induced by detachment from the tree. The second rise corresponds with the respiration during ripening of other climacteric fruits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.