Abstract

1. The uncoupler-stimulated ATPase activity of castor bean endosperm mitochondria and submitochondrial particles has been studied. The rate of ATP hydrolysis catalyzed by intact mitochondria was slow and little enhanced by addition of uncouplers at the concentration required for uncoupling the oxidative phosphorylation. ATPase activity was stimulated at higher concentrations of uncouplers. 2. 1-Anilinonaphthalene 8-sulfonate fluorescence was decreased when the mitochondria were oxidizing succinate. Carbonylcyanide- p-trifluoromethoxyphenylhydrazone and antimycin reversed the succinate-induced fluorescence diminution. ATP did not induce the fluorescence response. 3. The addition of succinate, NADH or ascorbate N,N,N′,N′- tetramethyl-p- phenylenediamine as electron donor induced high ATPase activity in the presence of low concentrations of uncouplers. Stimulating effect of uncouplers was completely abolished by further addition of antimycin. 4. Submitochondrial particles were prepared by sonication. The particles catalyzed a rapid hydrolysis of ATP and carbonylcyanide- p-trifluoromethoxyphenylhydrazone at 10 -8 M did not stimulate the ATPase activity. Addition of succinate induced uncoupler-stimulated ATPase activity. The effect of succinate was completely abolished by further addition of antimycin. 5. The treatment of submitochondrial particles by trypsin or high pH also induced uncoupler-stimulated ATPase activity. 6. The above results were interpreted to indicate that ATPase inhibitor regulated the back-flow reaction of mitochondrial oxidative phosphorylation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call