Abstract
To measure respiration-dependent blood flow in the total cavopulmonary connection (TCPC) of patients with Fontan circulation by using free-running, fully self-gated five-dimensional (5D) flow MRI. From July to November 2018, 10 volunteers (six female volunteers, mean age, 25.1 years ± 4.4 [standard deviation]) and six patients with Fontan circulation (two female patients, mean age, 19.7 years ± 7.5) with a TCPC were examined by using a cardiac- and respiration-resolved three-directional and three-dimensional phase-contrast MRI sequence (hereafter, 5D flow MRI). This prospective study was conducted with approval of the local ethics committee, and written informed consent was obtained from all participants and/or their representative. 5D flow data were acquired during free breathing. Data were reconstructed into 15-20 heart phases and four respiratory phases: end-expiration, inspiration, end-inspiration, and expiration. Respiration-dependent stroke volumes (SVs) and particle traces were analyzed from the caval circulation of volunteers and patients with Fontan circulation. Statistical analysis was performed by using parametric tests and scatterplots. The respiration dependency of caval blood flow was evaluated in all participants and was significantly elevated in patients with Fontan circulation as compared with volunteers. In patients, SV in the inferior vena cava (IVC) showed variations of 120% between inspiration and expiration (P = .002). The flow distribution in the IVC and superior vena cava among the four respiratory phases was differentiated by 20% (range, 9%-30%) and 4% (range, 0%-13%), respectively. Hemodynamic parameters (volume flow and blood flow distribution) throughout the cardiac and respiratory cycle can be measured using a single scan, potentially providing further insights into the Fontan circulation.© RSNA, 2019Supplemental material is available for this article.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.