Abstract

For thirteen representative taxa of metazooplankton from various depth horizons (<4,200 m) of the world’s oceans, respiration rate (681 datasets on 390 species) and ammonia excretion rate (266 datasets on 190 species) are compiled and analyzed as a function of body mass (dry mass, carbon or nitrogen), habitat temperature, habitat depth and taxon. Stepwise-regression analyses reveal that body mass is the most important parameter, followed by habitat temperature and habitat depth, whereas taxon is of lesser importance for both rates. The resultant multiple regression equations show that both respiration rate and ammonia excretion rate (per individual) increase with increase in body mass and habitat temperature, but decrease with habitat depth. Some taxa are characterized by significantly higher or lower rates of respiration or ammonia excretion than the others. Overall, the global-bathymetric models explain 93.4–94.2 % of the variance of respiration data and 80.8–89.7 % of the variance of ammonia excretion data. The atomic O:N ratios (respiration/ammonia excretion) are largely independent of body mass, habitat temperature, habitat depth and taxon, with a median of 17.8. The present results are discussed in light of the methodological constraints and the standing hypotheses for the relationship between metabolic rate and temperature. Perspectives for model improvement and possible application of it to plankton-imaging systems for rapid assessment of the role of metazooplankton in C or N cycles in the pelagic ecosystem are briefly discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.