Abstract

We have synthesized a series of 2-5A (ppp5'-A2'p5'A2'p5'A) analogs in which each adenosine residue has been sequentially replaced by inosine: viz., ppp5'I2'p5'A2'p5'A, ppp5'A2'p5'I2'p5'A, and ppp5'A2'p5'A2'p5'I. These transformations enabled us to delineate the role of each of the three purine N-6 amino groups of 2-5A in determining oligonucleotide binding to and activation of the 2-5A-dependent endoribonuclease, RNase L. With the RNase L activity of both mouse L cells and human Daudi lymphoblastoid cells, we found that the N-6 amino group of the first adenosine nucleotide residue (from the 5'-terminus) is of crucial importance in determining binding to the endonuclease; however, removal of the N-6 amino moieties of the second or third adenosine nucleotide residues resulted in only a minimal decrease in binding to the endonuclease. On the other hand, conversion of the third adenosine residue to inosine effected a dramatic (10,000-fold compared to 2-5A) loss in ability to activate the nuclease; however, execution of the same N-6 amino group conversion at either the first or second adenosine residue did not cause a major change in nuclease activation ability when the accompanying decreased endonuclease binding was considered. These results clearly demonstrate that the N-6 amino group of the first adenosine residue of 2-5A is critical in RNase L binding whereas the N-6 amino function of the third adenosine residue of 2-5A is crucial for the activation of RNase L.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.