Abstract
Software systems execute tasks that depend on different types of resources. However, the variability of resources may interfere with the ability of software systems to execute important tasks. In this paper, we present a proactive and reactive resource-driven adaptation framework that supports different types of resources and is based on the prioritisation of tasks. In our previous work, we defined a task modelling notation called SERIES. This paper builds on that notation and focuses on the adaptation process to improve resource utilisation by substituting tasks with their variants, substituting resources with alternative ones, executing tasks in a different order, or cancelling the execution of low-priority tasks. The framework was evaluated in terms of the percentage of executed critical task requests, average criticality of the executed task requests in comparison to the non-executed ones, overhead, and scalability. The evaluation was executed using two datasets related to a medicine consumption system and a manufacturing system. The evaluation results showed that the proposed framework increased the number of executed critical task requests and the average criticality of the executed task requests under resource variability with marginal overhead.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.