Abstract

Abstract Treatment of acidic mining water (MW) with industrial minerals and alkaline chemicals requires utilisation of unrenewable raw materials and produces disposable inorganic sludges of no further use. We investigated the efficiency of bio-based anionic nanofibrillated cellulose (NFC) to purify authentic MW high in metals and sulphate. In a short-term (10 min) adsorption experiment, highly acidic (pH 3.2) multi-metal process water was treated with anionic NFC gels differing in their consistency (1.1%, 1.4% and 1.8% w/w) at three sorbent-to-solution ratios. To unravel the purification efficiency of the NFC gels, MW was treated stepwise with a set of fresh NFC gels in three sequential batches. Each treated solution was filtrated before pH measurement and analysis for the NFC-induced changes in the metal and sulphate concentrations. All NFC gels efficiently co-adsorbed metals and sulphate and decreased the acidity of MW. Depending on the dosage, a triplicated treatment with the NFC gels removed as much as 32–75% of metal cations and 34–75% of sulphate anions. The retention of metals highly exceeded the amount of carboxyl groups in the sorbent. Thus, we concluded that, instead of electrostatic adsorption, the retention took place through formation of covalent metal-NFC complexes. The subsequent surplus in positive total charge formed on the NFC-surface, in turn, enabled electrostatic co-adsorption of sulphate anions. The mutual interactions between cellulose nanofibrils in the NFC gel weakened with decreasing consistency, which promoted the accessibility of the sorption sites. This improved the purification efficiency while decreasing the demand for cellulosic raw material. We concluded that anionic NFC could potentially serve as a multifunctional and resource-efficient purification agent in the treatment of acidic process waters of high ionic strength. Ideally, the elements retained could be liberated and recycled elsewhere.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.