Abstract

Past few years have witnessed the compelling applications of the blockchain technique in our daily life ranging from the financial market to health care. Considering the integration of the blockchain technique and the industrial Internet of Things (IoT), blockchain may act as a distributed ledger for beneficially establishing a decentralized autonomous trading platform for industrial IoT (IIoT) networks. However, the power and computation constraints prevent IoT devices from directly participating in this proof-of-work process. As a remedy, in this treatise, the cloud computing service is introduced into the blockchain platform for the sake of assisting to offload computational task from the IIoT network itself. In addition, we study the resource management and pricing problem between the cloud provider and miners. More explicitly, we model the interaction between the cloud provider and miners as a Stackelberg game, where the leader, i.e., cloud provider, makes the price first, and then miners act as the followers. Moreover, in order to find the Nash equilibrium of the proposed Stackelberg game, a multiagent reinforcement learning algorithm is conceived for searching the near-optimal policy. Finally, extensive simulations are conducted to evaluate our proposed algorithm in comparison to some state-of-the-art schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.