Abstract
Several recent results on thermodynamics have been obtained using the tools of quantum information theory and resource theories. So far, the resource theories utilised to describe thermodynamics have assumed the existence of an infinite thermal reservoir, by declaring that thermal states at some background temperature come for free. Here, we propose a resource theory of quantum thermodynamics without a background temperature, so that no states at all come for free. We apply this resource theory to the case of many non-interacting systems, and show that all quantum states are classified by their entropy and average energy, even arbitrarily far away from equilibrium. This implies that thermodynamics takes place in a two-dimensional convex set that we call the energy-entropy diagram. The answers to many resource-theoretic questions about thermodynamics can be read off from this diagram, such as the efficiency of a heat engine consisting of finite reservoirs, or the rate of conversion between two states. This allows us to consider a resource theory which puts work and heat on an equal footing, and serves as a model for other resource theories.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.