Abstract
The Logic of Bunched Implications (BI) was introduced by O'Hearn and Pym. The original presentation of BI emphasised its role as a system for formal logic (broadly in the tradition of relevant logic) that has some interesting properties, combining a clean proof theory, including a categorical interpretation, with a simple truth-functional semantics. BI quickly found significant applications in program verification and program analysis, chiefly through a specific theory of BI that is commonly known as 'Separation Logic'. We survey the state of work in bunched logics - which, by now, is a quite large family of systems, including modal and epistemic logics and logics for layered graphs - in such a way as to organize the ideas into a coherent (semantic) picture with a strong interpretation in terms of resources. One such picture can be seen as deriving from an interpretation of BI's semantics in terms of resources, and this view provides a basis for a systematic interpretation of the family of bunched logics, including modal, epistemic, layered graph, and process-theoretic variants, in terms of resources. We explain the basic ideas of resource semantics, including comparisons with Linear Logic and ideas from economics and physics. We include discussions of BI's λ-calculus, of Separation Logic, and of an approach to distributed systems modelling based on resource semantics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.