Abstract

In cloud manufacturing environments, the scheduling of multi-user manufacturing tasks often fails to consider the impact of service supply on resource allocation. This study addresses this gap by proposing a bi-objective multi-user multi-task scheduling model aimed at simultaneously minimising workload and maximising customer satisfaction. To accurately capture customer satisfaction, a novel comprehensive rating index is introduced, integrating the actual completion cost, time, and processing quality against customer expectations. Furthermore, vehicle constraints are incorporated into the model to accommodate potential delays in transport vehicle availability, thereby enhancing its alignment with real-world manufacturing settings. The proposed mathematical model is solved using an improved three-stage genetic algorithm, which integrates the k-means algorithm and a real-time sequence scheduling strategy to optimise solution quality. Validation against alternative algorithms across various case scales demonstrates the efficacy of the approach in providing practical scheduling solutions for real-case scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.