Abstract

This paper focuses on the resource allocation problem of multiplexing two different service scenarios, enhanced mobile broadband (eMBB) and ultrareliable low latency (URLLC) in 5G New Radio, based on dynamic numerology structure, mini-time slot scheduling, and puncturing to achieve optimal resource allocation. To obtain the optimal channel resource allocation under URLLC user constraints, this paper establishes a relevant channel model divided into two convex optimization problems: (a) eMBB resource allocation and (b) URLLC scheduling. We also determine the numerology values at the beginning of each time slot with the help of deep reinforcement learning to achieve flexible resource scheduling. The proposed algorithm is verified in simulation software, and the simulation results show that the dynamic selection of numerologies proposed in this paper can better improve the data transmission rate of eMBB users and reduce the latency of URLLC services compared with the fixed numerology scheme for the same URLLC packet arrival, while the reasonable resource allocation ensures the reliability of URLLC and eMBB communication.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call