Abstract

Heavy metal-polluted water is of great concern to human health and the eco-environment. In situ water remediation techniques enabled by highly efficient adsorption materials are of great importance in these circumstances. Among all the materials used in water remediation, iron-based nanomaterials and porous materials are of great interest, benefiting from their rich redox reactivity and adsorption function. Here, we developed a facile protocol to directly convert the widely spread red soil in south China to fabricate the Fe2O3/faujasite (FAU)-type zeolite composite material. The detailed synthesis procedure and synthesis parameters, such as reaction temperature, reaction time, and the Si/Al ratio in the raw materials, have been carefully tuned. The as-synthesized composite materials show good adsorption capacity for typical heavy metal(loid) ions. With 0.001 g/mL Fe2O3/FAU-type zeolite composite material added to different heavy metal(loid)-polluted aqueous solutions (single type of heavy metal(loid) concentration: 1,000 mg/L [ppm]), the adsorption capacity was shown to be 172, 45, 170, 40, 429, 693, 94, and 133 mg/g for Cu (II), Cr (III), Cr (VI), As (III), Cd (II), Pb (II), Zn (II), and Ni (II) removal, respectively, which can be further expanded for heavy metal-polluted water and soil remediation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call