Abstract
A reasonably general theory for predicting the outcome of coevolution among interacting species is developed. It is applied to a model for resource partitioning among competing species. Current theory for resource partitioning is based on derivations of a “limiting similarity”—i.e., a limit to how similar competitors can be to one another consistent with coexistence. This theory presumes there is a mechanism, perhaps invasion and extinction, which causes competitors to attain the limiting similarity. The view taken in this paper is that partitioning is an evolutionary compromise between pressures for character displacement and disadvantages inherent in the shift to different resource types. A set of principles is offered for the evolution of the parameters in ecological models. (1) For single population models natural selection causes the parameters ultimately to assume those values which produce the highest equilibrium population size. (2) For models of interacting populations, but without interspecific frequency-dependence, natural selection causes the parameters to assume values which produce either the highest or lowest equilibrium population size for any species depending on the sign of the “feedback” in the community obtained by deleting that species. (3) For models of interacting populations with interspecific frequency dependence natural selection leads to parameter values which produce intermediate equilibrium population sizes. A function called the conditional equilibrium population size is introduced. Provided (a) the mean fitness is a maximum in each species at a stable coevolutionary equilibrium and (b) there is negative density-dependence in each species then natural selection causes the parameters to assume values which produce the highest conditional equilibrium population size for each species. These coevolutionary principles, applied to a model for resource partitioning, entail that the niche separation between species relative to given niche widths, increases with the variety of available resources and decreases with the number of competing populations. Also, the evolution of character displacement between two species does not proceed far enough to maximize the equilibrium population sizes of the species involved. These results imply that the relationship between the niche overlap (of nearest neighbors) and species diversity is qualitatively different depending on whether the variety of resources at any place covaries with the species diversity there. Without covariation niche overlap increases with species diversity; with covariation overlap may decrease with species diversity. This study provides the beginning of a theory for the convergent evolution of community structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.