Abstract

Background: The elimination of the Hepatitis C virus (HCV) will only be possible if rapid and efficient actions are taken. Artificial neural networks (ANNs) are computing systems based on the topology of the biological brain, containing connected artificial neurons that can be tasked with solving medical problems. Aim: We expanded the previously presented HCV micro-elimination project started in September 2020 that aimed to identify HCV infection through coordinated screening in asymptomatic populations and developed two ANN models able to identify at-risk subjects selected through a targeted questionnaire. Material and method: Our study included 14,042 screened participants from a southwestern region of Oltenia, Romania. Each participant completed a 12-item questionnaire along with anti-HCV antibody rapid testing. Hepatitis-C-positive subjects were linked to care and ultimately could receive antiviral treatment if they had detectable viremia. We built two ANNs, trained and tested on the dataset derived from the questionnaires and then used to identify patients in a similar, already existing dataset. Results: We found 114 HCV-positive patients (81 females), resulting in an overall prevalence of 0.81%. We identified sharing personal hygiene items, receiving blood transfusions, having dental work or surgery and re-using hypodermic needles as significant risk factors. When used on an existing dataset of 15,140 persons (119 HCV cases), the first ANN models correctly identified 97 (81.51%) HCV-positive subjects through 13,401 tests, while the second ANN model identified 81 (68.06%) patients through only 5192 tests. Conclusions: The use of ANNs in selecting screening candidates may improve resource allocation and prioritize cases more prone to severe disease.

Highlights

  • Hepatitis C virus (HCV) is a hepatotropic, enveloped RNA virus affiliated to the Flaviviridae family [1]

  • To classify data according to different influencing factors and choosing an outcome, artificial neural networks (ANNs)—computing systems based on the topology of the biological brain, containing connected artificial neurons—were successfully employed in various fields, including medicine [19,20]

  • We expanded the previously presented HCV micro-elimination project started in September 2020 that aimed to identify HCV infection through coordinated screening in asymptomatic populations and developed an evolved ANN model able to identify at-risk subjects selected through a targeted questionnaire

Read more

Summary

Introduction

Hepatitis C virus (HCV) is a hepatotropic, enveloped RNA virus affiliated to the Flaviviridae family [1]. HCV promotes ample changes in the liver, from lipid accumulation to fibrogenesis and liver disfunction [5]. It is one of the leading causes of liver malignancy worldwide [6,7]. Aim: We expanded the previously presented HCV micro-elimination project started in September 2020 that aimed to identify HCV infection through coordinated screening in asymptomatic populations and developed two ANN models able to identify at-risk subjects selected through a targeted questionnaire. When used on an existing dataset of 15,140 persons (119 HCV cases), the first ANN models correctly identified 97 (81.51%) HCV-positive subjects through 13,401 tests, while the second ANN model identified 81 (68.06%) patients through only 5192 tests. Conclusions: The use of ANNs in selecting screening candidates may improve resource allocation and prioritize cases more prone to severe disease

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.