Abstract

This paper proposes an advanced decentralized method where an Automated Guided Vehicle (AGV) can optimally insert charging stations into an already assigned optimal tour of task locations. In today's industrial AGV systems, advanced algorithms and techniques are used to control the whole fleet of AGVs robustly and efficiently. While in academia, much research is conducted towards every aspect of AGV control. However, resource management or battery management is still one aspect which is usually omitted in research. In current industrial AGV systems, AGVs operate until their resource level drops below a certain threshold. Subsequently, they head to a charging station to charge fully. This programmed behaviour may have a negative impact on the manufacturing systems performance. AGVs lose time charging at inconvenient moments while this time loss could be avoided. Using the approach, an AGV can choose independently when it will visit a charging station and how long it will charge there. A general constrained optimization algorithm will be used to solve the problem and the current industrial resource management will be used as a benchmark. We use a simple extension of the Traveling Salesman Problem (TSP) representation to model our approach. The paper follows a decentral approach which is in the interest of the authors. The result of the proposal is a compact and practical method which can be used in today's operative central or decentral controlled AGV systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.