Abstract
Recently, the integration of Device-to-Device (D2D) communication to cellular networks became a vitality task with the growth of mobile devices, as well as requirements of enhanced network performance in terms of spectral efficiency, energy efficiency, and latency. In this paper, we propose a spectrum allocation framework based on Reinforcement Learning (RL) for joint mode selection, channel assignment, and power control in D2D communication. The objective is to maximize the overall throughput of the network while ensuring the quality of transmission and guaranteeing low latency requirements of D2D communications. The proposed algorithm uses reinforcement learning (RL) based on Markov Decision Process (MDP) with a proposed new reward function to learn the policy by interacting with the D2D environment. An Actor-Critic Reinforcement Learning (AC-RL) approach is then used to solve the resource management problem. The simulation results show that our learning method performs well, can greatly improve the sum rate of D2D links, and converges quickly, compared with the algorithms in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.