Abstract

Shipboard enrichment incubation experiments were performed to elucidate the limiting resources for heterotrophic prokaryotic production and to discuss the potential impact of bottom water and sediment discharges in relation to manganese (Mn) nodule exploitation on the heterotrophic prokaryotes in the oligotrophic northeast equatorial Pacific. Compared to an unamended control, the production of heterotrophic prokaryotes increased 25-fold in water samples supplemented with amino acids (i.e., organic carbon plus nitrogen), whereas the production increased five and two times, respectively, in samples supplemented with either glucose or ammonium alone. These results indicate that heterotrophic prokaryote production in the northeast equatorial Pacific was co-limited by the availability of dissolved organic carbon and inorganic nitrogen. In samples from the nutrient-depleted surface mixed layer (10-m depth), the addition of a slurry of bottom water and sediment doubled heterotrophic prokaryote production compared to an unamended control, whereas sonicating the slurry prior to addition quadrupled the production rate. However, little difference was observed between an unamended control and slurry-amended samples in the subsurface chlorophyll a (Chl a) maximum (SCM) layer. Thus, the impact of slurry discharge is more significant at the nutrient-depleted surface mixed layer than at the high-nutrient SCM layer. The greatly enhanced prokaryote production resulting from the addition of sonicated slurry further suggests that dissociated organic carbon may directly stimulate heterotrophic prokaryote production in the surface mixed layer. Overall, the results suggest that the surface discharge of bottom water and sediments during manganese nodule exploitation could have a significant environmental impact on the production of heterotrophic prokaryotes that are currently resource limited.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.