Abstract
Throughout the evolutionary history of plants, drought, shade, and scarcity of nutrients have structured ecosystems and communities globally. Humans have begun to drastically alter the prevalence of these environmental factors with untold consequences for plant communities and ecosystems worldwide. Given limitations in using organ-level traits to predict ecological performance of species, recent advances using tolerances of low resource availability as plant functional traits are revealing the often hidden roles these factors have in structuring communities and are becoming central to classifying plants ecologically. For example, measuring the physiological drought tolerance of plants has increased the predictability of differences among species in their ability to survive drought as well as the distribution of species within and among ecosystems. Quantifying the shade tolerance of species has improved our understanding of local and regional species diversity and how species have sorted within and among regions. As the stresses on ecosystems continue to shift, coordinated studies of whole-plant growth centered on tolerance of low resource availability will be central in predicting future ecosystem functioning and biodiversity. This will require efforts that quantify tolerances for large numbers of species and develop bioinformatic and other techniques for comparing large number of species.
Highlights
Drought, shade, and nutrient scarcity limit plant growth worldwide, determine the structure and functioning of terrestrial ecosystems, and are fundamental drivers of plant evolution (Tilman, 1988; Grime, 2001; Valladares and Niinemets, 2008; Craine, 2009; McDowell et al, 2011). Understanding the role these stresses play in structuring ecosystems is critical because different components of environmental change work synergistically to alter the ecological importance of drought, shade, and nutrient scarcity (Field et al, 1992; Figure 1)
Many disturbances increase the availability of resources in general and shift plant communities away from species that tolerate the stresses of low resource availability (Wilson and Tilman, 1993; Craine et al, 2001; Grime, 2001) while non-resource stresses, e.g., increased ozone or UV-B, decrease resource demand by plants which would increase the availability of light, water, and nutrients (Searles et al, 2001; Dermody et al, 2006)
The changes in vegetation dynamics caused by drought, shade, and nutrient scarcity will be dependent on other current aspects of the ecosystem and global change factors will interact in their ultimate effects
Summary
Shade, and nutrient scarcity limit plant growth worldwide, determine the structure and functioning of terrestrial ecosystems, and are fundamental drivers of plant evolution (Tilman, 1988; Grime, 2001; Valladares and Niinemets, 2008; Craine, 2009; McDowell et al, 2011). INTRODUCTION Drought, shade, and nutrient scarcity limit plant growth worldwide, determine the structure and functioning of terrestrial ecosystems, and are fundamental drivers of plant evolution (Tilman, 1988; Grime, 2001; Valladares and Niinemets, 2008; Craine, 2009; McDowell et al, 2011).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.