Abstract

PurposeThe purpose of this paper is to investigate the influence of different finish processes on the surface integrity and tribological behaviour of cylinder running surfaces for internal combustion engines.Design/methodology/approachThe cutting force during finishing and the resulting surface topography was measured for a variety of cylinder running surfaces made of EN-GJL-250, EN-GJV-400 and thermal sprayed aluminium alloy. A separate conditioning tool was developed and tested. Different analysis methods (SEM, EDX, SIMS and FIB) for the characterisation of the boundary conditions were used. By an oscillating friction wear test and a single cylinder floating liner engine, the running-in and frictional behaviour was rated.FindingsIt was shown that honing with low cutting forces and silicon carbide cutting material decreases the friction in operation. The characteristics of the boundary layers after running-in depend on the finish machining process. A preconditioning with a separate tool can adjust the boundary layer and running-in behaviour. Based on the experimental results, a multi-body and computational fluid dynamics simulation was developed for the floating liner engine.Originality/valueThe results demonstrate the potential of finishing with low process forces to reduce friction and the need for a complete consideration of the tribological system piston ring/cylinder liner surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.