Abstract

Field trials are of key importance for novel technologies seeking commercialization and widespread adoption. This is also the case for quantum key distribution (QKD), which allows distant parties to distill a secret key with unconditional security. Typically, QKD demonstrations over urban infrastructures require complex stabilization and synchronization systems to maintain a low quantum bit error and high secret key rates over time. Here we present a field trial that exploits low-complexity self-stabilized hardware and a novel synchronization technique, to perform QKD over optical fibers deployed in the city center of Padua, Italy. Two techniques recently introduced by our research group are evaluated in a real-world environment: the iPOGNAC polarization encoder was used for preparation of the quantum states, while temporal synchronization was performed with the Qubit4Sync algorithm. The results here presented demonstrate the validity and robustness of our resource-effective QKD system, which can be easily and rapidly installed in an existing telecommunication infrastructure, thus representing an important step towards mature, efficient, and low-cost QKD systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.