Abstract

Aims Plant functional traits determine how plants respond to environmental factors and influence ecosystem processes. Among them, root traits and analyses of relations between above and below-ground traits in natural communities are scarce. We characterized a set of above- and below-ground traits of three dominant shrub species in a semiarid shrub-steppe that had contrasting leaf phenological habits (deciduous, semideciduous and evergreen). We analysed if there was coordination among above- and below-ground resource economics patterns: i.e. patterns of biomass allocation, construction costs and lifespan. Important Findings Above- and below-ground traits and their resource economics relations pointed to species-specific functional strategies to cope with drought and poor soils and to a species ranking of fast to slow whole-plant strategies in terms of resource uptake, biomass construction costs and turnover. The deciduous shrub, Proustia cuneifolia, had relatively deep and even distribution of roots, and high proportion of short-lived tissues of low C construction costs: it had high fine to coarse root and high leaf-to-stem biomass ratios, high specific leaf area (SLA), and stems of low wood density. This strategy allows Proustia to maximize and coordinate above- and belowground resources uptake as long as the most limiting factor (water) is available, but at the cost of having relative high plant biomass turnover. The evergreen Porlieria chilensis, instead, displayed a more conservative and slow strategy in terms of resource economics. It had ~80% of the roots in the 40 cm topsoil profile, low proportion of fine compared with coarse roots and low leaf-to-stem ratios, low SLA and stems of high wood density, i.e. it invested in C costly tissues that, overall, persist longer but probably at the cost of having lower plant resource uptake rates. Traits in the semideciduous Adesmia bedwellii were in between these two functional extremes. Our results revealed high functional diversity and aboveand below-ground complementarity in resource economics among these three codominant species in the Chilean coastal desert.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.