Abstract

In this paper, we consider Internet of Things (IoT) systems that can be applied to various applications with low-mobility or static IoT devices, such as wireless sensor networks and charging systems for low-power devices with communication. The IoT systems consist of IoT devices and a hybrid access point (H-AP) powered by both on-grid and renewable energy sources. The IoT devices have a capability to harvest energy from the H-AP’s radio frequency signal, and they perform their tasks by using only their harvested energy. We consider the tasks do not have a real-time requirement which can be stored in the task queues of the IoT devices and performed later. We study resource and task scheduling for the IoT systems which aims at minimizing the on-grid energy consumption at the H-AP while guaranteeing the minimum average data rate and minimum task performing rates of IoT devices. To achieve the goal, we first propose a centralized resource and task scheduling algorithm. However, its computational complexity and signaling overhead are too large due to the task scheduling for each IoT device. Thus, to resolve these issues, we propose a hybrid resource and task scheduling algorithm in which each IoT device determines its own task scheduling in a distributed manner and the H-AP determines the resource scheduling. We then provide performance analyses showing that our proposed algorithms are asymptotically optimal and well satisfy the QoS requirements of IoT devices even with distributed task scheduling. Through the simulation results, we verify the analyses and show the performance of our algorithms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call