Abstract

The interference mitigation technique based on fractional frequency reuse (FFR) provides improved cell-edge performance with similar overall cell capacity as that of systems with the frequency reuse factor of one. Furthermore, frequency sub-band allocation by FFR has the benefit of allowing flexibility for the deployment of femto-cells through frequency partitioning. Determination of a proper frequency partitioning criterion between the cell-center and the cell-edge, and between the cells with femto-cells is an important issue. In addition, time resource partitioning introduces another degree of freedom to the design of time-frequency resource allocation. In this paper, we propose a novel time-frequency resource allocation mechanism using FFR for a macro-femto overlay cellular network. Feasible frequency sub-band and time resource is allocated to the cell-center and the cell-edge region in a cell by the proposed partitioning criterion and the time partitioning ratio. We provide a guideline for how to determine the partitioning criterion for the regions and how to design the amount of time resource. We derive the average capacity of macro-cells and femto-cells, and introduce a new harmonic mean metric to maximize the average capacity of the regions while achieving the fairness among users in a cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.