Abstract

In conventional multicast scheme (CMS), the total throughput of multicast group is constrained by the user with the worst channel quality. In order to overcome this problem of limited throughput, we introduce a resource allocation algorithm by exploiting layered coding combined with erasure correction coding for multicast services in the downlink of OFDMA-based multi-antenna system. To reduce the feedback overhead of uplink, we design a novel transmission scheme with limited feedback. Then, we formulate the joint subcarrier and power allocation problem for the data of base layer and enhancement layers, which is shown to be NP hard. Hence, in order to reduce the computational complexity, we propose a three-phase suboptimal algorithm. The algorithm is designed to maximize the system throughput while at the same time guarantee the quality of services (QoS) requirements of all multicast groups. It is composed of precoding scheme, proportional fairness subcarrier allocation algorithm and modified water-filling power allocation algorithm with QoS guarantees (MWF-Q). To further decrease the complexity of MWF-Q, a power allocation algorithm with increased fixed power allocation algorithm with QoS guarantees is introduced. Simulation results show that the proposed algorithms based on limited feedback scheme significantly outperform CMS and any other existing algorithm with full feedback. Moreover, the proposed scheme can efficiently reduce 50 % of the full feedback overhead.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.