Abstract

In software testing, fault detection and removal process is one of the key elements for quality assurance of the software. In the last three decades, several software reliability growth models were developed for detection and correction of faults. These models were developed under strictly static assumptions. The main goal of this article is to investigate an optimal resource allocation plan for fault detection and removal process of software to minimize cost during testing and operational phase under dynamic condition. For this we develop a mathematical model for fault detection and removal process and Pontryagain‘s Maximum principle is applied for solving the model. Genetic algorithm is used to find the optimal allocation of fault detection and removal process. Numerical example is also solved for resource allocation for fault detection and remoal process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.