Abstract

Cloud computing has gained popularity with advancements in virtualization technology and the deployment of 5G. However, scheduling workload in a heterogeneous multi-cloud environment is a complicated process. Users of cloud services want to ensure that their data is secure and private, especially sensitive or proprietary information. Several research works have been proposed to solve the challenges associated with cloud computing. The proposed Adaptive Priority based scheduling (PBS) focuses on reducing data access completion time and computation expense for task scheduling in cloud computing. PBS assigns tasks depending on its size and selects the minimum cost path for data access. It contains a task register, scheduler, and task execution components for efficient task execution. The proposed system also executes a double signature mechanism for data privacy and security in data storage. This study correlates the perfo}rmance of three algorithms, PBS, (Task Requirement Degree) TRD and (recommended a Risk adaptive Access Control) RADAC, in terms of task execution time and makespan time. The experimental results demonstrate that PBS outperforms TRD and RADAC in both metrics, as the number of tasks increases. PBS has a minimum task execution time and a lower makespan time than the othertwo algorithms

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call