Abstract

AbstractIn this article, we propose a double reconfigurable intelligent surface (RIS)‐aided ambient backscatter communication (AmBC) network combined with non‐orthogonal multiple access (NOMA) technology, which not only successfully assists the base station (BS) in connecting with the cell edge user, but also enhances backscatter communication rate, energy efficiency, and spectrum efficiency. In an effort to obtain the highest backscatter communication rate, we design a RIS and BS‐based resource allocation problem which is solved by determining the optimal phase shifts of RISs and the optimal power allocation for signals of NOMA users. We break it down into two smaller challenges in order to discover the best solution. For one thing, we iterate the optimal phase shifts between the two RIS combinations using an alternating optimization technique. For another, the bisection method is used to provide the NOMA user with the ideal power allocation. Finally, the results of the simulation substantiate the viability of the proposed scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.