Abstract

Infrastructure as a Service (IaaS) is a cloud computing service provided over the internet to facilitate the provisioning of various services such as storage, processes, etc. The provider in the IaaS market may offer some purchasing plans including: reservation, on-demand, and spot plans for its resources. As in real scenarios, demand volume for each plan is assumed to be a random variable with a given probability distribution. The provider maximizes its average revenue in the long run by optimal allocation of its resources among the plans. We formulate an Integer Linear Programming (ILP) model with a stochastic constraint, to determine the number of resources to be allocated for each plan in every time slot in the planning horizon. First, fixed prices are considered for each plan, then two mechanisms of Continuous Double Auction and Second Price Sealed Bid Auction are considered for reservations and spot plans, respectively, to obtain market-driven prices of the services. The Seasonal Weighted Moving Average method is used to predict the amount of demand in every slot. Finally, the proposed mechanisms are evaluated through simulations and the results confirm the effectiveness of the methods in maximizing the revenue and overall utilization of the available IaaS capacity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call