Abstract
Femtocells are being considered a promising technique to improve the capacity and coverage for indoor wireless users. However, the cross-tier interference in the spectrum-sharing deployment of femtocells can degrade the system performance seriously. The resource allocation problem in both the uplink and the downlink for two-tier networks comprising spectrum-sharing femtocells and macrocells is investigated. A resource allocation scheme for cochannel femtocells is proposed, aiming to maximize the capacity for both delay-sensitive users and delay-tolerant users subject to the delay-sensitive users' quality-of-service constraint and an interference constraint imposed by the macrocell. The subchannel and power allocation problem is modeled as a mixed-integer programming problem, and then, it is transformed into a convex optimization problem by relaxing subchannel sharing; finally, it is solved by the dual decomposition method. Subsequently, an iterative subchannel and power allocation algorithm considering heterogeneous services and cross-tier interference is proposed for the problem using the subgradient update. A practical low-complexity distributed subchannel and power allocation algorithm is developed to reduce the computational cost. The complexity of the proposed algorithms is analyzed, and the effectiveness of the proposed algorithms is verified by simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.