Abstract
Mobile cellular users traveling in city buses are experiencing poor quality of signals due to the interference and the large number of mobile devices. To enhance the Quality-of-Service (QoS), deployment of small cell networks in city buses is a promising solution. The deployment of small cells in vehicular environment makes the resource allocation more challenging because of the dynamic interference relationships experienced by them. Therefore, resource allocation in vehicular environment within moving small cells (MSCs) needs to be handled carefully. In this study, we investigate the problem of resource allocation in city bus transit system with multiple routes. Then, we propose a Percentage Threshold Interference Graph (PTIG) based allocation of resources to MSCs in a network. City buses of multiple routes travel with variable speed and may share some of the same road segments which make it difficult to extract the exact interference patterns between them. Therefore, Long Short Term Memory (LSTM) neural networks are used to predict the city buses locations. The predicted locations of city buses are then used to generate PTIG by finding the dynamic interference relationship between MSCs. Graph coloring algorithm is used to allocate the resources to PTIG. Numerical results are presented to show the comparison of resource allocation using PTIG and Time Interval based Interference Graph (TIIG) in terms of resource block utilization and time complexity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.