Abstract

The reforestation value chain depends on the selection of qualified seeds supplied from various sources to ensure the successful growth, as each reforestation site has particular ecological parameters. The reforestation process usually involves many partners from different organisations, increasing the complexity of seed allocation. This research addresses seed allocation in a collaborative, make-to-order reforestation value chain. Using multi-objective optimisation models and considering different degrees of collaboration, it aims to find the most compatible seeds for each reforestation site so as to favour regeneration success. As a case study, the models are applied to the Quebec reforestation value chain which manages over 1450 seed lots and an annual production of 130 million seedlings. The process must consider two groups of partners: a seed center, and 18 nurseries. The lexicographic method is used to solve the models. Results show that an array of optimal solutions favouring reforestation success are possible by considering the main objective in each model. The second objective, integrating partners’ objectives separately, modifies the initial solution significantly. Furthermore, when the objectives of both groups of partners are considered simultaneously, the proposed allocation differs depending on their priority, while the reforestation success objective does not deteriorate. The proposed set of models provide decision makers with a means to rapidly find a suitable seed allocation plan that favours reforestation success while considering partners satisfaction and existing bottlenecks in the value chain. This article contributes to the field by providing a sustainable seed allocation model favouring reforestation success covering the three pillars of sustainability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.