Abstract
This paper considers the joint fronthaul resource and rate allocation for the OFDMA uplink cloud radio access networks (C-RANs). This amounts to determine users' transmission rates and quantization bit allocation for I/Q baseband signals, which must be transferred from remote radio heads (RRHs) to the cloud over the capacity-limited fronthaul network. Our design aims at maximizing the system sum rate through optimal allocation of fronthaul capacity and cloud computation resources. Toward this end, we propose a novel two-stage approach to solve the underlying non-linear integer problem. In the first stage, we relax the integer variables to attain a relaxed problem, which is solved by employing a pricing-based method. Interestingly, we show that the pricing-based problem is convex with respect to each optimization variable, which can be, therefore, solved efficiently. In addition, we develop a novel mechanism to iteratively update the pricing parameter which is proved to converge. In the second stage, we propose two different rounding strategies, which are applied to the obtained continuous solution of the relaxed problem to achieve a feasible solution for the original problem. Finally, we present numerical results to demonstrate the significant sum-rate gains of our proposed design with respect to a standard greedy algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.