Abstract

In recent years, in order to provide a better quality of service (QoS) to Internet of Things (IoT) devices, the cloud computing paradigm has shifted toward the edge. However, the resource capacity (e.g., bandwidth) in fog network technology is limited and it is essential to efficiently bind the IoT applications with stringent QoS requirements with the available network infrastructure. In this paper, we formulate a joint user association and resource allocation problem in the downlink of the fog network, considering the evergrowing demand of QoS requirements imposed by the ultra-reliable low latency communications and enhanced mobile broadband services. First, we determine the priority of different QoS requirements of heterogeneous IoT applications at the fog network by enforcing the analytical framework using an analytic hierarchy process (AHP). Using the AHP, we then formulate a two-sided matching game to initiate stable association between the fog network infrastructure (i.e., fog devices) and IoT devices. Subsequently, we consider the externalities in the matching game that occurs due to job delay and solve the network resource allocation problem by applying the “best-fit” resource allocation strategy during matching. The simulation results illustrate the stability of the user association and efficiency of resource allocation with higher utility gain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.