Abstract

In this paper, we investigate a joint resource allocation algorithm in a time-division duplex (TDD)-based cell-free massive MIMO (CFMM) system, which has great potential to improve spectrum efficiency and throughput. Because the throughput of the system is a bottleneck due to the sharing of the pilot, we attempted to alleviate pilot contamination. We propose a pilot assignment approach called user-distance-ordering-based pilot assignment (UDOPA) based on the distance between users and the center, which can be calculated by the K-means method. Then, using an access point (AP) selection algorithm, only the APs having a major impact on the macro diversity gain of a user are selected as the serving APs. In contrast to the existing AP selection algorithms, users with the same pilot are not allowed to share the same serving AP in the proposed AP selection algorithm, which also significantly reduces the complexity of data processing. Finally, a modified max–min power control scheme with teaching–learning-based optimization (TLBO) is proposed to further improve the performance of the systems and guarantee the minimum user rate. Simulation results show that the proposed joint resource allocation scheme can effectively enhance CFMM systems’ performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call