Abstract

A resource allocation framework is presented for spectrum underlay in cognitive wireless networks. We consider both interference constraints for primary users and quality of service (QoS) constraints for secondary users. Specifically, interference from secondary users to primary users is constrained to be below a tolerable limit. Also, signal to interference plus noise ratio (SINR) of each secondary user is maintained higher than a desired level for QoS insurance. We propose admission control algorithms to be used during high network load conditions which are performed jointly with power control so that QoS requirements of all admitted secondary users are satisfied while keeping the interference to primary users below the tolerable limit. If all secondary users can be supported at minimum rates, we allow them to increase their transmission rates and share the spectrum in a fair manner. We formulate the joint power/rate allocation with proportional and max-min fairness criteria as optimization problems. We show how to transform these optimization problems into a convex form so that their globally optimal solutions can be obtained. Numerical results show that the proposed admission control algorithms achieve performance very close to that of the optimal solution. Also, impacts of different system and QoS parameters on the network performance are investigated for the admission control, and rate/power allocation algorithms under different fairness criteria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.