Abstract

Attracted by the advantages of multi-access edge computing (MEC) and non-orthogonal multiple access (NOMA), this article studies the resource allocation problem of a NOMA-MEC system in an ultra-dense network (UDN), where each user may opt for offloading tasks to the MEC server when it is computationally intensive. Our optimization goal is to minimize the system computation cost, concerning the energy consumption and task delay of users. In order to tackle the non-convexity issue of the objective function, we decouple this problem into two sub-problems: user clustering as well as jointly power and computation resource allocation. Firstly, we propose a user clustering matching (UCM) algorithm exploiting the differences in channel gains of users. Then, relying on the mean-field game (MFG) framework, we solve the resource allocation problem for intensive user deployment, using the novel deep deterministic policy gradient (DDPG) method, which is termed by a mean-field-deep deterministic policy gradient (MF-DDPG) algorithm. Finally, a jointly iterative optimization algorithm (JIOA) of UCM and MF-DDPG is proposed to minimize the computation cost of users. The simulation results demonstrate that the proposed algorithm exhibits rapid convergence, and is capable of efficiently reducing both the energy consumption and task delay of users.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.