Abstract

Femtocells are shown highly effective on improving network coverage and capacity by bringing base stations closer to mobile users. In this paper, we investigate the problem of streaming scalable videos in femtocell cognitive radio (CR) networks. This is a challenging problem due to the stringent QoS requirements of real-time videos and the new dimensions of network dynamics and uncertainties in CR networks. We develop a framework that captures the key design issues and trade-offs with a stochastic programming problem formulation. In the case of a single FBS, we develop an optimum-achieving distributed algorithm, which is shown also optimal for the case of multiple non-interfering FBS's. In the case of interfering FBS's, we develop a greedy algorithm that can compute near-optimal solutions, and prove a closed-form lower bound for its performance. The proposed algorithms are evaluated with simulations, and are shown to outperform two alternative schemes with considerable margins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.