Abstract

Vehicular communications face a tremendous challenge in guaranteeing low latency for safety-critical information exchange due to fast varying channels caused by high mobility. Focusing on the tail behavior of random latency experienced by packets, latency violation probability (LVP) deserves particular attention. Based on only large-scale channel information, this paper performs spectrum and power allocation to maximize the sum ergodic capacity of vehicle-to-infrastructure (V2I) links while guaranteeing the LVP for vehicle-to-vehicle (V2V) links. Using the effective capacity theory, we explicitly express the latency constraint with introduced latency exponents. Then, the resource allocation problem is decomposed into a pure power allocation subproblem and a pure spectrum allocation subproblem, both of which can be solved with global optimum in polynomial time. Simulation results show that the effective capacity model can accurately characterize the LVP. In addition, the effectiveness of the proposed algorithm is demonstrated from the perspectives of the capacity of the V2I links and the latency of the V2V links.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.