Abstract

Background. One of the key tasks in 5G networks is the resource allocation for machine communication devices (MCD), since they affect the battery life of devices and the quality of service for applications. The MCD system usually consists of small devices and sensors. MCD cannot afford high energy consumption, as their battery life is limited due to the difficulty of replacing or charging them.Objective. The purpose of the work is to increase energy efficiency while increasing the autonomous distribution resource on MCD. To achieve this goal, the task is allotted to create a resource allocation scheme using a controlled power limit of M2M small devices of 5G communication system.Methods. The article proposes a new resource allocation algorithm that uses traffic capacity controlled access. This is an uplink resource allocation technique in which devices decide to allocate resource blocks based on their priority and power level of the corresponding application.Results. The method consists of two stages. At the first stage, the number of carriers that should be allocated for a certain MCD device with low energy consumption is selected in order to increase its service life. At the second stage, an effective solution is implemented by introducing a traffic capacity value. A specific traffic capacity value is selected based on the QoS metric. This traffic capacity improves carrier selection for less powerful devices.Conclusions. The presented method is used for the physical layer of a 5G network. The results obtained show that the proposed algorithm is simpler and achieves better performance compared to existing ones, as it provides shorter delay times, greater energy efficiency and greater traffic capacity.

Highlights

  • One of the key tasks in 5G networks is the resource allocation for machine communication devices (MCD), since they affect the battery life of devices and the quality of service for applications

  • The MCD system usually consists of small devices and sensors

  • allocate resource blocks based on their priority and power level of the corresponding application

Read more

Summary

Background

One of the key tasks in 5G networks is the resource allocation for machine communication devices (MCD), since they affect the battery life of devices and the quality of service for applications. The MCD system usually consists of small devices and sensors. MCD cannot afford high energy consumption, as their battery life is limited due to the difficulty of replacing or charging them

Objective
Methods
Results
Conclusions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.