Abstract
Mobile edge computing (MEC) powered by unmanned aerial vehicles (UAVs), with the advantages of flexible deployment and wide coverage, is a promising technology to solve computationally intensive communication problems. In this paper, an orthogonal time frequency space (OTFS)-based UAV-assisted MEC system is studied, in which OTFS technology is used to mitigate the Doppler effect in UAV high-speed mobile communication. The weighted total energy consumption of the system is minimized by jointly optimizing the time division, CPU frequency allocation, transmit power allocation and flight trajectory while considering Doppler compensation. Thus, the resultant problem is a challenging nonconvex problem. We propose a joint algorithm that combines the benefits of the atomic orbital search (AOS) algorithm and convex optimization. Firstly, an improved AOS algorithm is proposed to swiftly obtain the time slot allocation and high-quality solution of the UAV optimal path. Secondly, the optimal solution for the CPU frequency and transmit power allocation is found by using Lagrangian duality and the first-order Taylor formula. Finally, the optimal solution of the original problem is iteratively obtained. The simulation results show that the weighted total energy consumption of the OTFS-based system decreases by 13.6% compared with the orthogonal frequency division multiplexing (OFDM)-based system. The weighted total energy consumption of the proposed algorithm decreases by 11.7% and 26.7% compared with convex optimization and heuristic algorithms, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.