Abstract

Motivated by recent experiments, where a voltage biased Josephson junction is placed in series with a resonator, the classical dynamics of the circuit is studied in various domains of parameter space. This problem can be mapped onto the dissipative motion of a single degree of freedom in a nonlinear time-dependent potential, where in contrast to conventional settings the nonlinearity appears in the driving while the static potential is purely harmonic. For long times the system approaches steady states which are analyzed in the underdamped regime over the full range of driving parameters including the fundamental resonance as well as higher and sub-harmonics. Observables such as the dc-Josephson current and the radiated microwave power give direct information about the underlying dynamics covering phenomena as bifurcations, irregular motion, up- and down conversion. Due to their tunability, present and future set-ups provide versatile platforms to explore the changeover from linear response to strongly nonlinear behavior in driven dissipative systems under well defined conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.