Abstract
The mass loading effects of adsorbing and desorbing contaminant molecules on the magnitude and characteristics of frequency fluctuations in a thickness-shear resonator are studied. The study is motivated by the observation that the frequency of a thickness-shear resonator is determined predominantly by such mechanical parameters as the thickness of the resonator, elastic stiffnesses, mass loading of the electrodes, and energy trapping. An equation was derived relating the spectral density of frequency fluctuations to: (1) rates of adsorption and desorption of one species of contaminant molecules; (2) mass per unit area of a monolayer of molecules: (3) frequency constant; (4) thickness of resonator; and (5) number of molecular sites on one resonator surface. The induced phase noises were found to be significant in very-high-frequency resonators and are not simple functions of the percentage of area contaminated. The spectral density of frequency fluctuations was inversely proportional to the fourth power of the thickness if other parameters were held constant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.