Abstract

We derive the behavior of the average exit time (i.e., the number of reflections before escape) of a ray path traveling between two perfect mirrors subject to dynamic random-tilt aberrations. Our calculation is performed in the paraxial approximation. When small random tilts are taken into account, we may consider an asymptotic regime that generically reduces the problem to the study of the exit time from an interval for a harmonic, frictionless oscillator driven by Gaussian white noise. Despite its apparent simplicity, the exact solution of this problem remains an open mathematical challenge, and we propose here a simple approximation scheme. For flat mirrors, the natural frequency of the oscillator vanishes, and, in this case, the average exit time is known exactly. It exhibits a 2/3 scaling-law behavior in terms of the variance of the random tilts. This behavior also follows from our approximation scheme, which establishes the consistency of the scaling law. Our mathematical results are confirmed with simulation experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.