Abstract

The unconventional low-lying spin excitations, recently observed in neutron scattering experiments on Cs2CuCl4, are explained with a spin liquid wave function. The dispersion relation as well as the wave vector of the incommensurate spin correlations are well reproduced within a projected BCS wave function with gapless and fractionalized spin-1/2 excitations around the nodes of the BCS gap function. The proposed wave function is shown to be very accurate for one-dimensional spin-1/2 systems and remains similarly accurate in the two-dimensional model corresponding to Cs2CuCl4, thus representing a good ansatz for describing spin fractionalization in two dimensions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.