Abstract

We report implementation of a resonantly driven singlet-triplet spin qubit in silicon. The qubit is defined by the two-electron antiparallel spin states and universal quantum control is provided through a resonant drive of the exchange interaction at the qubit frequency. The qubit exhibits long T_{2}^{*} exceeding 1 μs that is limited by dephasing due to the ^{29}Si nuclei rather than charge noise thanks to the symmetric operation and a large micromagnet Zeeman field gradient. The randomized benchmarking shows 99.6% single gate fidelity which is the highest reported for singlet-triplet qubits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call