Abstract

The electronic structure of hexagonal boron nitride (h-BN) is explored using measurements of x-ray absorption and resonant inelastic x-ray scattering (RIXS) at the nitrogen K edge (1s) in tandem with calculations using many-body perturbation theory within the GW and Bethe-Salpeter equation (BSE) approximations. Our calculations include the effects of lattice disorder from phonons activated thermally and from zero point energy. They highlight the influence of disorder on near-edge x-ray spectra.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call